Multi-Task Federated Reinforcement Learning with Adversaries

Aqeel Anwar 1 Zishen Wan 1 Arijit Raychowdhury 1

Abstract

Reinforcement learning algorithms pose a serious threat from adversaries. The adversaries can manipulate the learning algorithm resulting in non-optimal policies. In this paper, we analyze the Multi-task Federated Reinforcement Learning algorithms, where multiple collaborative agents in various environments are trying to maximize the sum of discounted return, in the presence of adversarial agents. We argue that the common attack methods are not guaranteed to carry out a successful attack on Multi-task Federated Reinforcement Learning and propose an adaptive attack method with better attack performance. Furthermore, we modify the conventional federated reinforcement learning algorithm to address the issue of adversaries that works equally well with and without adversaries. Experimentation on reinforcement learning problems of different scales shows that the proposed attack method outperforms other general attack methods and the proposed modification to federated reinforcement learning algorithm was able to achieve near-optimal policies in the presence of adversarial agents.

1. Introduction

In the past decade, Reinforcement Learning (RL) has gained wide popularity in solving complex problems in an online fashion for various problem sets such as game playing (Mnih et al., 2015; Krishnan et al., 2022), autonomous navigation (Anwar & Raychowdhury, 2018; Wang et al., 2019; Wan et al., 2021), robotics (Kober et al., 2013) and network security (Xiao et al., 2018). With a boom in Internet of Things devices, we have a lot of compute power at our disposal. The problem, however, is that the compute is distributed. Distributed algorithms have been studied to take advantage of these distributed compute agents. Federated Learning (Bonawitz et al., 2019; 2017) is a distributed approach to machine learning tasks enabling model training on large sets of decentralized data by individual agents. The key idea behind federated learning is to preserve the privacy of the data to the local node responsible for generating it. Federated learning has also been considered in the context of reinforcement learning problem for both multi-agent RL (Kumar et al., 2017; Zhao et al., 2019; Palmer et al., 2017) and multi-task RL (Lim et al., 2020; Liu et al., 2019; Zeng et al., 2020; Wan et al., 2022) where multiple RL agents either in a single or multiple environments try to jointly maximize the collective of individual discounted returns, respectively.

While machine learning (ML) algorithms have proven to provide superior accuracy over conventional methods, they pose a threat from adversarial manipulations. Common attack methods include data-poisoning (Huang et al., 2017; Kos & Song, 2017) and model poisoning (Blanchard et al., 2017; Bhagoji et al., 2019) where the adversary tries to manipulate the input data or directly the learned model. Such vulnerabilities can significantly degrade the performance. In this paper, we are interested in mathematically formulating the vulnerabilities of multi-task federated reinforcement learning (MT-FedRL) problems under model poisoning attacks. Various works have addressed the adversarial attacks in RL and Federated ML by adversarial training, feature de-noising, modifying the federated aggregation operator (Rodríguez-Barroso et al., 2020; Mandlekar et al., 2017; Pattanaik et al., 2017), etc. However, not much research is done in addressing the vulnerabilities of MT-FedRL systems where multiple agents are collectively maximizing the sum of discounted return. The key motivation for this work is to rigorously analyze MT-FedRL under an adversarial lens so that it can be made immune to adversarial attacks.

The contributions of this paper are as follows

- We provide a clean mathematical formulation of the MT-FedRL problem in the presence of adversaries and analyze the vulnerabilities of such systems.
- We argue that the general adversarial methods are not good enough to create an effective attack on MT-FedRL, and propose a model-poisoning attack methodology AdAMInG based on minimizing the information

1School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA. Correspondence to: Aqeel Anwar <aqeel.anwar@gatech.edu>, Zishen Wan <zishenwan@gatech.edu>, Arijit Raychowdhury <arijit.raychowdhury@ece.gatech.edu>.

Proceedings of the 39th International Conference on Machine Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copyright 2022 by the author(s).
gained during training.

- The key motivation is to make MT-FedRL systems prone to adversarial manipulations, hence we address the adversarial attack issue by proposing a modification to the general FedRL algorithm, ComA–FedRL, that works equally well with and without adversaries.

- We conduct an in-depth adversarial attack study on the MT-FedRL system from small (grid-based task) to large (drone autonomous navigation task) computing scales. Our results demonstrate the effectiveness of our proposed method AdAMInG and ComA–FedRL under different parameters and scenarios.

2. Related Work

The effects of adversaries in machine learning algorithms were first discovered in (Szegedy et al., 2013) where it was observed that a small l_p norm perturbation to the input of a trained classifier model resulted in confidently misclassifying the input. The adversary here acts in the form of specifically creating adversarial inputs to produce erroneous outputs to a learned model (Kurakin et al., 2016; Tramèr et al., 2017). For supervised learning problems, the network model has already been trained, attacking the input is the most probable choice for an adversary. Our work focuses on attack methods for the problem of reinforcement learning where the system is trained on the go.

In RL, the adversary can act either in the form of data-poisoning attacks, such as creating adversarial examples (Huang et al., 2017; Kos & Song, 2017), or can directly attack the underlying learned policy (Huang & Zhu, 2019; Ma et al., 2019) either in terms of malicious falsification of reward signals, or estimating the RL dynamics from a batch data set and poisoning the policy. Authors in (Gleave et al., 2019), attack an RL agent by selecting an adversarial policy acting in a multi-agent environment as a result of creating adversarial observations. Their results on a two-player zero-sum game show that an adversarial agent can be trained to interact with the victim winning reliably against it. Such attacks, however, can not be directly extended to multi-task RL problem, which is the scope of this paper.

In federated RL, alongside the data-poisoning and policy-poisoning attacks, we also have to worry about the model-poisoning attacks. Since we have more than one learning agents, a complete agent can take up the role of an adversary. In model poisoning attacks the adversary tries to modify the learned model parameters directly by feeding false information purposely poisoning the global model (Blanchard et al., 2017; Bhagoji et al., 2019). Since federated learning uses an average operator to merge the local model parameters learned by individual agents, such attacks can severely affect the performance of the global model. Such model poisoning attacks have been extensively studied for supervised federated learning problems. In this paper, we address model poisoning attacks for MT-FedRL problems which have not been studied in much detail.

Adversarial training can be used to mitigate the effects of such adversaries. (Xie et al., 2019) showed that the classification model can be made much more robust against the adversarial examples by feature de-noising. The robustness of RL policies has also been analyzed by the adversarial training (Pinto et al., 2017; Tessler et al., 2019). (Tessler et al., 2019) show that the data-poisoning can be made a part of RL training to learn more robust policies. They feed perturbed observations during RL training for the trained policy to be more robust to dynamic changing conditions during test time. (Rodríguez-Barroso et al., 2020) shows that the data-poisoning attacks in federated learning can be resolved by modifying the federated aggregation operator based on induced ordered weighted averaging operators (Yager & Filev, 1999) and filtering out possible adversaries.

To the best of our knowledge, this is the first work on MT-FedRL in the presence of adversaries. We address the effects of model poisoning attacks on the MT-FedRL problem by mathematically analyzing the vulnerabilities. In the light of the observed vulnerabilities, we then propose a modification to the existing algorithm addressing the issue of adversaries.

3. Multi-task Federated Reinforcement Learning (MT-FedRL)

We consider a Multi-task Federated Reinforcement Learning (MT-FedRL) problem with n agents. Each agent operates in its own environment which can be characterized by a different Markov Decision Process (MDP). The goal of MT-FedRL is to learn a unified policy, which is jointly optimal across n environments. Each agent shares its information with a centralized server. We consider policy gradient methods for RL. The MDP at each agent i can be described by $\mathcal{M}_i = (\mathcal{S}_i, \mathcal{A}_i, P_i, \mathcal{R}_i, \gamma_i)$ where \mathcal{S}_i is the state space, \mathcal{A}_i is the action space, P_i is the MDP transition probabilities, $\mathcal{R}_i : \mathcal{S}_i \times \mathcal{A}_i \rightarrow \mathbb{R}$ is the reward function, and $\gamma_i \in (0, 1)$ is the discount factor. Let V_i^π be the value function, induced by policy π, at the state s in the i-th environment, we have

$$V_i^\pi(s) = \mathbb{E}_{\rho_i} \left[\sum_{k=0}^{\infty} \gamma_i^k \mathcal{R}_i(s_k, a_k) | s_0 = s \right].$$

where $a_{i}^{k} \sim \pi(\cdot | s_{i}^{k})$. We denote by ρ_i the initial state distribution over the action space of i-th environment. The goal is to find a unified policy π^* that maximizes the sum of long-term discounted return for all the environments i.e.

$$\max_{\pi} V(\pi; \rho) \triangleq \sum_{i=0}^{n-1} \mathbb{E}_{(s_i, \rho_i)} V_i^\pi(s_i)$$

$$\rho = \begin{bmatrix} \rho_0 \\ \vdots \\ \rho_{n-1} \end{bmatrix}$$
Communicate every n iterations

Figure 1. Adversaries can impact the unified policy by providing adversarial policies to the server. This results in negatively impacting the achieved discounted return on the environments.

We use \(\theta \) to model the family of policies \(\pi_{\theta}(a|s) \), considering both the tabular method and neural network-based function approximation. The goal of the MT-FedRL problem is to find \(\theta^* \) satisfying

\[
\theta^* = \arg \max_{\theta} V(\theta; \rho) = \sum_{i=0}^{n-1} \mathbb{E}_{s_i \sim \rho_i} V_{i}^{\pi_{\theta}}(s_i). \quad (3)
\]

In MT-FedRL, the data is not shared with the server due to privacy concerns. The data remains at the local agent and instead, the policy parameter \(\theta_i \) is shared with the server. Each agent \(i \) utilizes its locally available data \(\mathcal{D}_i \) to train the policy parameter \(\theta_i \) by maximizing its local value function \(V_i^\pi \) through SGD. After the completion of each episode \(k \), the agents share their policy parameter \(\theta_i^{k-} \) with a centralized server. The server carries out a smoothing average and generates \(N \) new sets of parameters \(\theta_i^{k+} = \alpha^k \theta_i^{k-} + \beta^k \sum_{j \neq i, j \notin \mathcal{L}} \theta_j^{k-} \) for each agent, where \(\alpha^k, \beta^k = \frac{1}{n-1} \in (0, 1) \) are smoothing average weights.

The goal of this smoothing process is to achieve a consensus among the agents’ parameters, \(\lim_{k \to \infty} \theta_i^{k+} \to \theta^*, \forall i \in \{0, \ldots, n-1\} \). As the training proceeds, the smoothing average constants converge to \(\alpha^k, \beta^k \to \frac{1}{n} \). The conditions on \(\alpha^k, \beta^k \) to guarantee the convergence can be found in (Zeng et al., 2020).

4. MT-FedRL with adversaries

Let \(\mathcal{L} \) denote the set of adversarial agents in a \(n - \)agent MT-FedRL problem. The smoothing average at the server can be decomposed based on the adversarial and non-adversarial agent as follows

\[
\theta_i^{k+} = \alpha^k \theta_i^{k-} + \beta^k \sum_{j \neq i, j \notin \mathcal{L}} \theta_j^{k-} + \beta^k \sum_{l \in \mathcal{L}} \theta_l^{k-} \quad (4)
\]

where \(i \notin \mathcal{L} \). \(\theta_i^{k+} \) is the updated policy parameter for agent \(i \) calculated by the server at iteration \(k \). In an adversarial MT-FedRL, the goal of the adversarial agent is to prevent the MT-FedRL from achieving the unified \(\theta^* \) by purposely providing adversarial policy parameters \(\theta_i^{k-} \) (Fig. 1).

Parameters that effect learning: Using gradient ascent, each agent updates its own set of policy parameters \(\theta_i^{(k-1)+} \) locally according to the following equation,

\[
\theta_i^{k-} = \theta_i^{(k-1)+} + \delta_i \nabla_{\theta_i} V_{i}^{\pi_{\theta_i}}(\rho_i) \quad (5)
\]

where \(\delta_i \) is the learning rate for agent \(i \). Using Eq. 5 in the smoothing average Eq. 3 yields

\[
\theta_i^{k+} = \left(\alpha^k \theta_i^{(k-1)+} + \beta^k \sum_{j \neq i, j \notin \mathcal{L}} \theta_j^{(k-1)+} \right) + \beta^k \sum_{j \notin i, j \notin \mathcal{L}} \delta_j \nabla_{\theta_j} V_{j}^{\pi_{\theta_j}}(\rho_j) + \left(\beta^k \sum_{l \in \mathcal{L}} \theta_l^{k-} \right) \quad (6)
\]

The server update of the policy parameter can be decomposed into three parts.

- The weighted sum of the previous set of policy parameters \(\theta_i^{(k-1)+} \) shared by server with agents.
- The agent’s local update, which tries to shift the policy parameter distribution towards the goal direction.
- The adversarial policy parameter which aims at shifting the policy parameter away from achieving the goal.

If the update carried out by the adversarial agent is larger than the sum of each agent’s policy gradient update, the policy parameter will start diverging from the desired consensus \(\theta^* \). The success of the adversarial attack hence depends on the nature of adversarial policy parameter \(\theta_i^{k-} \), non-adversarial agent’s local learning rate \(\delta_i \), and the number of non-adversarial agents \(n - |\mathcal{L}| \).

Threat Model: In MTFedRL, the adversarial agent can control the convergence through the policy parameter \(\theta_i^{k-} \) that it shares with the server. The adversarial agent needs to share the policy parameter that moves the distribution of the average of non-adversarial agents either to a uniform distribution or in the direction that purposely yields bad actions. Generally shifting the distribution to uniform distribution will require less energy than to shift it to a non-optimal action distribution. This requires that the adversary cancel out the information gained by all the other non-adversarial agents hence not being able to differentiate between good and bad actions, leaving all the actions equally likely.

We will assume the following threat model. At iteration \(k \), each adversarial agent \(l \) shares the following policy parameter with the server \(\theta_{adv}^{k} = \lambda^k \theta_{adv}^{k} \). Hence the threat model is defined by the choice of the attack model \(\theta_{adv} \) and \(\lambda^k \in \mathbb{R} \) which is a non-negative iteration-dependant scaling.
factor that will be used to control the norm of the adversarial attack. To make the scaling factor more meaningful, we will assume that

$$\|θ_{adv}\|^2 \approx \frac{1}{(n - |L|)} \sum_{i \in L} \|θ_i\|^2$$ \hspace{1cm} (7)

5. Attack Models - AdAMInG

Making the MT-FedRL systems secure against adversarial attacks requires us to analyze the vulnerabilities of such systems. Hence, in this section, we propose an attack model mathematically for MT-FedRL systems.

Two common attack models are Random Policy Attack (Rand) and Opposite Goal Policy Attack (OppositeGoal), which details can be found in Appendix A. Even though the adversarial choice of opposite goal makes an intuitive sense as the best attack method, Section 7 shows that it’s not. We propose an attack method, AdAMInG, that takes into account the nature of MT-FedRL smoothing averaging and devises the best attack given the information available locally. The goal of AdAMInG is to devise an attack that uses a single adversarial agent with a small scaling factor by forcing the server to gradually forget what it learns from the non-adversarial agents.

For smoothing average at the server to lose all the information gained by other non-adversarial agents we should have

$$\theta_i^{k+} = \frac{1}{\beta^k|L|} \left(\alpha^k \theta_i^{k-} + \beta^k \sum_{j \neq i, l} \theta_j^{k-} \right)$$ \hspace{1cm} (8)

Using the above equation in Eq. 4 will result $\theta_i^{k+} = 0$, hence losing the information gained by θ_i^{k-}. The problem in Eq. 8 is that the adversarial agents do not have access to the policy parameter shared by non-adversarial agents $\theta_i^{k-}, \forall i \neq l$ and hence the smoothing average of non-adversarial agents is unknown. The attack model then is to estimate the smoothing average of non-adversarial agents.

The adversarial agent has two available information: (1) The previous set of policy parameter shared by the adversarial agent to the server $\theta_i^{(k-1)-}$. (2) The federated policy parameter shared by the server to the adversarial agent $\theta_i^{(k-1)+}$.

The adversarial agent can estimate the smoothing average of the non-adversarial agents from these quantities. The AdAMInG attack shares the following policy parameter

$$\theta_i^{k-} = \lambda^k \left(\frac{\alpha^k \theta_i^{(k+)-} - \theta_i^{(k-)-}}{\beta^k} \right)$$ \hspace{1cm} (9)

The smoothing average at the server for $i \in \{0, \ldots, n - 1\}, i \neq l$ becomes

$$\theta_i^{k+} = \left(\alpha^k \theta_i^{k-} - \frac{\lambda^k}{n-1} \beta^k \theta_i^{(k-)-} \right) + \sum_{j \neq i, l} \left(\beta^k \theta_j^{k-} - \frac{\beta^k \lambda^k}{n-1} \theta_j^{(k-)-} \right)$$ \hspace{1cm} (10)

We want $\theta_i^{k+} \rightarrow 0, \forall i \in \{0, n - 1\}, i \neq l$. This means forcing the two terms inside the parenthesis to 0. If the initialization of all the agents are same, i.e. $\theta_i^0 = \theta^0 = 0, \forall i$ and the learning rate is small, we have $\|\theta_i^{k-} - \theta_i^{(k-)-}\| < \epsilon$. Hence $\theta_i^{k+} \rightarrow 0$ can be achieved by the scaling factor $\lambda^k = \arg \min_{\lambda^k} g(\lambda^k, n)$, where

$$g(\lambda^k, n) = \left| \alpha^k - \frac{\lambda^k}{n-1} \right| + \left| \beta^k \left(1 - \frac{\lambda^k}{n-1} \right) (n-2) \right|$$

For simplicity we have not shown the dependence of α^k, β^k in $g(\lambda^k, n)$ as they directly depend on k. Solving this optimization problem yields $\lambda^k = n - 1, (n \geq 3)$.

This means that the scaling factor should be equal to the number of non-adversarial agents and is independent of the iteration k. For $\lambda^k < \lambda^k$ we still can achieve a successful attack if the learning rate δ is not too high.

As the training proceeds, the values of the smoothing constants α^k, β^k approach their steady-state value of $\frac{1}{n}$. At that point, the steady-state value of $g(\lambda^k, n)$ defined as $g_{ss}(\lambda^k, n)$ is given by $g_{ss}(\lambda^k, n) = \frac{n-1-\lambda}{n}$. The steady-state value $g_{ss}(\lambda^k, n)$ signifies how effective the AdAMInG attack will be for the selected parameters (λ^k, n). A steady-state value of 0 signifies a perfect attack, where the policy parameter shared by the server loses all the information gained by the non-adversarial agents. A steady-state value of 1 indicates a completely unsuccessful attack. The smaller the $g_{ss}(\lambda^k, n)$, the better the AdAMInG attack. A detailed explanation on how $g(\lambda^k, n)$ affects the MT-FedRL can be found in Appendix B.

Unlike the OppositeGoal attack, we can guarantee that the AdAMInG attack will yield a successful attack if the scaling factor is equal to the number of non-adversarial agents. We will see in the results section that the scaling factor does not need this high if the learning rate δ is not high. We will be able to achieve a good enough attack even if $\lambda^k < n - 1$. The only down-side with the AdAMInG attack method is that it requires twice the amount of memory as compared to that of OppositeGoal or Rand attack method. AdAMInG attack method needs to store the both the adversary shared policy parameter $\theta_i^{(k-)-}$ and the server shared policy parameter $\theta_i^{(k-)+}$ from the previous iteration to compute the new set of policy parameters to be shared θ_i^{k-} as shown in Eq. 9.
6. Detecting Attacks - ComA-FedRL

Adversary can severely affect the performance of the unified policy in MT-FedRL systems. Based on the analysed vulnerabilities in the AdAMInG attack method, we propose Communication Adaptive Federated RL (ComA-FedRL) to address the adversarial attacks on a Federated RL algorithm. Instead of communicating the policy parameter from all agents at a fixed communication interval, we assign different communication intervals to agents based on the confidence of them being an adversary. An agent, with higher confidence of being an adversary, is assigned a large communication interval and vice-versa.

ComA-FedRL begins with a pre-train phase, where each agent tries to learn a locally optimistic policy independent of others. After every certain number of episodes, the server randomly assigns a policy to all the environments without replacement for evaluation, and the cumulative reward achieved by this policy is recorded. Based on the nature of the policy and the environment it is cross-evaluated in, we have four cases as shown in Table 2. When the policy locally learned by a non-adversarial agent is evaluated in the environment of a non-adversarial agent, it generally performs better than a random policy because of the correlation of the underlying tasks. Hence we get a slightly higher cumulative reward compared to other cases. If an adversarial policy is cross-evaluated on a non-adversarial agent’s environment, it generally performs worse because of the inherent nature of the adversary, giving a low cumulative reward. When the policies are evaluated on the adversarial agent’s environment, the adversary can present a secondary attack in faking the cumulative reward. It intentionally reports a low return with the hopes of confusing the server to mistake a non-adversarial agent with an adversarial one. Since the adversarial agent has no way of knowing if the policy shared by the server belongs to an adversarial or a non-adversarial agent, it always shares a low cumulative return.

At the end of the pre-train phase, the cumulative rewards are averaged out for a given policy and are compared to a threshold. If the averaged reward of the policy is below (above) this threshold, the policy is marked as possibly-adversarial (possibly-non-adversarial). The possibly-adversarial agents are assigned a higher communication interval, while possibly-non-adversarial agents are assigned a smaller communication interval. The agents are constantly re-evaluated after a certain number of iterations. After re-evaluation, if an already marked possible-adversary agent is re-marked as possibly-adversary, the agent’s communication interval is doubled, signifying a higher probability of it being an adversary and making it contribute even lesser towards the server smoothing average. Hence, as the training proceeds, the adversarial agent’s contribution to the server smoothing average becomes smaller and smaller.

7. Experimental Results

We evaluate the proposed attack and detection schemes on both simpler tabular-based MT-FedRL problem (GridWorld) and complex neural network-based MT-FedRL problem (AutoNav). We use policy gradient methods for both cases.

7.1. GridWorld - Tabular RL

We begin our experimentation with a tabular-based problem of GridWorld (Fig. 8). We characterize the performance of the adversarial attack by the probability of successful attack p_{sa}. The detailed GridWorld problem description and metric definition can be found in Appendix D.1.

Effect of Adversaries We first evaluate the effect of the attack models. Fig. 2 reports the p_{sa} for the three attack methods with the scaling factor of $n−1$ and 1 (and a learning rate $\sigma = 0.2$). With the optimal scaling factor of $n−1$, it can be seen that all the three attack methods were able to achieve a good enough attack ($p_{sa} > 96\%$). For a scaling factor of 1, however, only AdAMInG attack method was able to achieve a successful attack ($p_{sa} = 98\%$).

As mentioned in Section 4, for a scaling factor of 1, the performance of the attack method depends on the learning rate (δ) and the number of non-adversarial agents $(n−|\mathcal{L}|)$. Fig. 3 reports p_{sa} of the attack methods with varying learning rates. It can be seen that the greater the learning rate, the poorer the performance of the attack method. For a higher learning rate, the local update for each agent’s
policy parameter has more effect than the update of the server carried out with the adversary, and hence poorer the performance of the attack. A detailed analysis of the learning rate on AdAMInG is provided in Appendix E.

Another thing to observe is that as the learning rate increases the relative performance of the OppositeGoal attack compared to the Random policy attack becomes poorer even becoming worse than the Random policy attack. The reason behind this is that the observable states across environments are not completely overlapping. The environment available to the adversary for devising OppositeGoal attack from might not have access to the states observable in other environments. Hence the OppositeGoal policy attack can not modify the policy parameter related to those states. OppositeGoal attack method either require a large scaling factor or more than one adversary to attack the MT-FedRL with performance similar to AdAMInG with single-adversary and unity scaling factor \(\lambda \), as shown in Fig. 4.

A similar trend can be observed with varying the number of non-adversarial agents. It can be seen in Fig. 9 that for a smaller number of non-adversarial agents (equivalently smaller number of total agents if the number of the adversarial agents is fixed), it is easier for the adversary to attack with a high \(p_{sa} \). The reason behind this is that the local update in Eq. 6 is proportional to the number of non-adversarial agents. With a smaller number of non-adversarial agents, the local update is smaller compared to the update by the adversary. Among the three attack methods, AdAMInG is the most resilient to these two parameters \((\lambda, n) \), hence making it a better choice for an adversarial attack in MT-FedRL.

Resolving Adversaries: We implement the N-agent single-adversary MT-FedRL problem using ComA-FedRL to address the high \(p_{sa} \) of the conventional FedRL algorithm. Fig. 10 compares the performance of FedRL and ComA-FedRL for different attack methods. By assigning a higher communication interval to the probable adversary, ComA-FedRL was able to decrease the probability of successful attack \(p_{sa} \) in the presence of adversary to as low as \(< 10\%\). The mean communication interval for adversarial and non-adversarial agents is shown in Fig. 11. It can be seen that Random policy attack has a slightly higher communication interval. The reason behind this is one of the non-adversarial agents was incorrectly marked as a probable adversarial agent at the beginning of training, but later that was self-corrected to a possibly-non-adversarial agent.

7.2. AutoNav - NN based RL

We also experiment on a more complex problem of drone autonomous navigation in 3D realistic environments (Fig. 16). The effectiveness of MT-FedRL-achieved unified policy is quantified by drone Mean Safe Flight (MSF). Similar as GridWorld, the performance of the adversarial attack is characterized by the probability of successful attack \(p_{sa} \). The detailed AutoNav problem description and metric definition can be found in Appendix D.2.

Effect of Adversaries: For each experiment, the MT-FedRL problem is trained for 4000 episodes using the REINFORCE algorithm with a learning rate of 1e-4 and \(\gamma = 0.99 \). Training hyper-parameters are listed in the Appendix D.2 in detail. Table 1 reports the MSF achieved by the AutoNav problem for various attack methods. It can be seen that except for the AdAMInG attack, the rest of the attack methods achieve MSF comparable to the one achieved in the absence of an adversary. Fig. 5 shows the \(p_{sa} \) for different attack methods. It can be seen that AdAMInG achieves a \(p_{sa} \) of \(\sim 99.5\% \) while all the other attack methods achieve a \(p_{sa} \) of \(< 6\% \). The trend is similar to the GridWorld task.

Resolving Adversaries: We implement the N-agent single-adversary MT-FedRL problem using ComA-FedRL to address the low MSF of FedRL. The results are reported in Table 1. It can be seen that the decrease in MSF due to adversary was recovered using ComA-FedRL. Fig. 5 plots the \(p_{sa} \) for various attack methods with ComA-FedRL and compares it with FedRL, showing that with ComA-FedRL we have \(p_{sa} < 10\% \). Hence ComA-FedRL was able to address the issue of adversaries in a MT-FedRL problem.

8. Conclusion

In this paper, we analyze the Multi-task Federated Reinforcement Learning algorithm with an adversarial perspective. We analyze the attacking performance of some gen-
eral attack methods and propose an adaptive attack method AdAMInG that devises an attack taking into account the aggregation operator of federated RL. The AdAMInG attack method is formulated and its effectiveness is studied. Furthermore, to address the issue of adversaries in the MT-FedRL problem, we propose a communication adaptive modification to conventional federated RL algorithm, ComA-FedRL, that varies the communication frequency for the agents based on their probability of being an adversary. Results on the problems of various scales show that the AdAMInG attack outperforms other attack methods almost every time. Moreover, ComA-FedRL can recover from the adversarial attack resulting in near-optimal policies.

References

Appendix

A. Common Attack Models

A.1. Random Policy Attack (Rand)

This attack will be used as a baseline for the other attack methods. In a Random policy attack, the adversarial agent maintains a set of random policy parameter sampled from a Gaussian distribution with mean 0 and standard deviation \(\sigma \in \mathbb{R} \) i.e. for each element \(\theta_{adv,j} \) of \(\theta_{adv} \)

\[
\theta_{adv,j} \sim \mathcal{N}(0, \sigma)
\]

A.2. Opposite Goal Policy Attack (OppositeGoal)

This attack method assumes that a sample environment is available for the agent to devise the attack. In this attack method, the adversary \(l \) learns a policy \(\pi_{OG}^{adv} \) utilizing its local environment with the goal of minimizing (instead of maximizing) the long term discounted return i.e. the objective function to maximize is

\[
J(\theta_{adv}) = -V_1^{\pi_{OG}^{adv}}(\rho_1)
\]

B. Mathematical Analysis of the AdAMInG Attack

Fig. 6 plots \(g(\lambda^k, n) \) as a function of the number of agents \(n \) for a scaling factor of 1 (\(\lambda^k = 1 \)). It can be seen that as the number of agents increases, the steady-state value \(g_{ss} \) becomes closer to 1 making it difficult for AdAMInG to have a successful attack with a scaling factor of 1. As the number of agents increases, the update carried out by the non-adversarial agent has a more significant impact on the smoothing average than the adversarial agent making it harder for the adversarial agent to attack. Fig. 7 plots \(g(\lambda^k, n) \) as a function of the scaling factor \(\lambda^k \) for \(n = 100 \). It can be seen that the scaling factor has a linear impact on the success of the AdAMInG attack. The performance of the AdAMInG attack increases linearly with the increase in the scaling factor. The best AdAMInG attack is achieved when \(\lambda^k = n - 1 \). Section 7 demonstrates that a non-zero steady-state value can still result in a successful attack for a small learning rate \(\delta \).

It is safe to assume that if we do not change the learning rate (and it is small enough), we can find the scaling factor required to achieve the same attacking performance by increasing the number of agents \(n \). The steady-state relationship between \(n \) and \(\lambda \) in Section 5 lets us analyze the relative attacking performances by varying the number of agents \(n \). Let’s say that for \(n_1 \) number of agents and a given learning rate that is small, we were able to achieve a successful attack with \(\lambda_1 \). Now to achieve the same successful attack for \(n_2 \) number of agents we need

\[
\lambda_2 = \frac{n_2(1 + \lambda_1)}{n_1} - 1
\]

C. Training Details

Policy gradient methods for RL is used to train both the GridWorld and AutoNav RL problems. The ComA-FedRL algorithm can be seen in Alg. 1. For ComA-FedRL, we use a base communication \(base_{comm} \). In the pre-train phase, the communication interval for each agent is assigned this base communication i.e.

\[
comm[i] = base_{comm} \quad \forall i \in \{0, \ldots, n - 1\}
\]

This means that in the pre-train phase, the agents learn only on local data, and after every \(base_{comm} \) number of episodes, the locally learned policies are shared with the server for cross-evaluation. This cross-evaluation runs \(n \) policies, each on a randomly selected environment and the cumulative reward is recorded. We also take into account the fact that the adversarial agent can present a secondary attack in terms of faking the cumulative reward that it return when evaluating a policy. In the ComA-FedRL implementation, we assume that the adversarial agent returns a cumulative reward of \(-1\), meaning that it fakes the policy being evaluated as adversarial.

At the end of the pre-train phase, the cross evaluated rewards are used to assign communication intervals to all the agents. There are various choices for the selection of this mapping. The underlying goal is to assign a higher communication interval for agents whose policy performs poorly when cross-evaluated and vice versa. We use the mapping shown in Alg. 2. A reward threshold \(r_{th} \) is used to assign agents different communication intervals. If the cumulative reward of a policy in an environment is below \(r_{th} \), it is assigned a high communication interval of \(high_{comm} \) episodes (marked as a possible adversary), otherwise it is assigned a low communication interval of \(low_{comm} \) episodes (marked as a possible non-adversary). The assigned communication interval also depends on the one-step history of communication intervals. If an agent was previously assigned a higher communication interval and is again marked as a possible adversary, the communication interval assigned to such an agent is doubled. The complete list of hyperparameters used for GridWorld and AutoNav can be seen in Table 4.
In this 12-agent MT-FedRL system, agent 0 is assigned the adversarial role \((l = 0)\). The goal for agent 0 is to decrease \(WR\). We characterize the performance of the adversarial attack by the probability of successful attack \(p_{sa}\) given by

\[
p_{sa} = 1 - \frac{WR_{adv}}{WR_{no-adv}}
\]

where \(WR_{adv}\) is the win ratio with an adversary, while \(WR_{no-adv}\) is the win ratio without any adversary.

D.2. MT-FedRL AutoNav Problem Description

We use PEDRA (Anwar & Raychowdhury, 2020) as the drone navigation platform. The drone is initialized at a starting point and is required to navigate across the hallways of the environments. There is no goal position, and the drone is required to fly avoiding the obstacles as long as it can. At each iteration \(t\), the drone captures an RGB monocular image from the front-facing camera which is taken as the state \(s_t \in \mathbb{R}^{(420 \times 180 \times 3)}\) of the RL problem. Based on the state \(s_t\), the drone takes an action \(a_t \in \mathcal{A}\). We consider a perception based probabilistic action space with 25 actions \(|\mathcal{A}| = 25\). A depth-based reward function is used to encourage the drone to stay away from the obstacles. We use neural network-based function approximation to determine the action probabilities based on states. The used network is shown in Appendix Fig. 17. We consider 4 indoor environments (indoor-twist, indoor-frogeyes, indoor-pyramid, and indoor-complex) hence we have \(n = 4\). These environments can be seen in Fig. 16.

The effectiveness of MT-FedRL-achieved unified policy is quantified by Mean Safe Flight (MSF) defined as

\[
MSF = \frac{1}{n-1} \sum_{i \neq l} d_i
\]

where \(d_i\) is the distance traveled by the agent in the environment \(i\) before crashing. In this 4-agent MT-FedRL system, the agent in the environment indoor-complex is assigned the adversarial role \((l = 3)\). The goal for the adversarial agent is to decrease this MSF. We will characterize the performance of the adversarial attack by the probability of successful attack \(p_{sa}\) given by

\[
p_{sa} = 1 - \frac{MSF_{adv}}{MSF_{no-adv}}
\]

where \(MSF_{adv}\) is the mean safe flight of the MT-FedRL system in the presence of the adversary, while \(MSF_{no-adv}\) is the mean safe flight of the MT-FedRL system in the absence of the adversary. The greater the \(p_{sa}\) the better the attack method in achieving its goal.

The C3F2 neural network architecture used in AutoNav is shown in Fig. 17.
E. Experimental Analysis of the AdAMInG Attack

We carry out a detailed analysis of the AdAMInG attack method. The smoothing average (Eq. 6) in the presence of an adversary carries out two updates - the local update which moves the policy parameter in a direction to maximize the collective goal, and the adversarial update which tries to move the policy parameter away from the consensus. When the training begins, the initial set of policy parameters \(\theta_i \) is farther away from the consensus \(\theta^* \). Gradient descent finds a direction from the current set of policy parameters to the consensus. This direction has a higher magnitude when the distance between the current policy parameter and the consensus is high. As the system learns, the current policy parameter gets closer to the consensus, and hence the magnitude of the direction of update decreases. So even if we have a static learning rate \(\delta \), the magnitude of local update \(\delta_j \nabla_{\theta_j} V_j^{\theta_j}(\rho_j) \) in Eq. 6 will, in general, decrease as the system successfully learns. There will be a point in training where the local update will become equal but opposite to the update being carried out by the AdAMInG adversary. From that point onwards, the current policy parameter won’t change much. This can be seen in Fig. 12. The greater the learning rate \(\delta \), the earlier in training we will get to the equilibrium point, and hence poorer the attack performance which can be seen in terms of the achieved discounted return in Fig. 13. A greater standard deviation of the consensus policy parameter indicates a better differentiation between good and bad actions for a given state. Fig. 14 plots the standard deviation of the consensus policy parameter for different learning rates \(\delta \). It can be seen that for higher learning rates, the consensus has a higher standard deviation hence being able to perform better than the consensus achieved under lower learning rates.

We also compare the performance of the AdAMInG attack in relation to the scaling factor \(\lambda \) and the number of agents \(n \). According to Eq. 13 an increase in the number of agents can be compensated by increasing the scaling factor \(\lambda \) to achieve the same attacking performance. We analyse the AdAMInG attack for the following two configurations: \((\lambda = 1, n = 8) \) and \((\lambda = 2, n = 12) \). Table 3 reports the \(p_{sa}(\%) \) and the standard deviation of the consensus policy parameter \(\theta^* \). It can be seen that both the configurations generate similar numbers. The same trend can be observed temporally, in Fig. 15, for the achieved discounted return during each episode in training.
Algorithm 1 Communication Aware Federated RL

Initialization: Number of agents n, $\theta_0^i \in \mathbb{R}^d$, step size β^k, base_comm $\in \mathbb{R}$, $\text{comm}[i] = \text{base_comm}$ $\forall i \in \{0, n-1\}$, wait_comm $\in \mathbb{R}$

for $k = 1, 2, 3, \ldots$ do
 % Pre-train phase
 if $k \leq \text{wait_comm}$ then
 if $k\%\text{base_comm} = 0$ then
 for each agent i in parallel do
 $\theta_i^{(k+1)-} \leftarrow \text{ClientUpdate}(i, \theta_i^{k+})$
 $r \leftarrow \text{CrossEvalPolicies}(r, \theta^{(k+1)-})$
 else
 Calculate smoothing average parameters α_k, β_k
 $\text{comm} \leftarrow \text{UpdateCommInt}(r, \text{comm})$
 end
 end
 for each agent i in parallel do
 if $k\%\text{comm}[i] = 0$ then
 $\theta_i^{(k+1)-} \leftarrow \text{ClientUpdate}(i, \theta_i^{k+})$
 num_active_agents $= 0$
 end
 for each agent i do
 if $k\%\text{comm}[i] = 0$ then
 num_active_agents $\leftarrow 1$
 $\theta_i^{(k+1)+} = \alpha^k \theta_i^{(k+1)-} + \beta^k \sum_{j \neq i} \theta_j^{(k+1)-}$
 Send $\theta_i^{(k+1)+}$ back to client i
 if num_active_agents $= n$ then
 $r \leftarrow \text{CrossEvalPolicies}(r, \theta^{(k+1)-})$
 end
 end
 end
 end
 for each agent i in parallel do
 Randomly assign each agent i another agent j without replacement
 $r_j.append(\text{ClientEvaluate}(i, \theta_j))$
 end
 return r

function CrossEvalPolicies(r, θ)
 for each agent i in parallel do
 $r_i.append(\text{ClientEvaluate}(i, \theta_i))$
 end
 return r

function ClientUpdate(i, θ)
 Compute the gradient of the local value function $\frac{\partial V^\pi_{\theta_i} (p_i)}{\partial \theta_{s_i, a_i}}$ based on the local data;
 Update the policy parameter
 $\theta^- = \theta + \delta^k \frac{\partial V^\pi_{\theta_i} (p_i)}{\partial \theta_{s_i, a_i}}$
 return θ^-

function ClientEvaluate(i, θ_j)
 Evaluate the policy θ_j on agent i and return the cumulative reward ret
 return ret

Figure 13. [GridWorld] Cumulative return (moving average of 60) for different learning rate (δ) and $n = 12$

Figure 14. [GridWorld] Standard deviation of the consensus policy parameter

Table 3. [GridWorld] Relationship between λ and n for same attack performance with AdAMlnG

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Learning rate δ</th>
<th>p_{sa} %</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 1, n = 8$</td>
<td>0.2</td>
<td>99.75%</td>
<td>0.036</td>
</tr>
<tr>
<td>$\lambda = 2, n = 12$</td>
<td>0.2</td>
<td>99.49%</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Figure 15. [GridWorld] Relationship between λ and n for same AdAMlnG attack performance. ($\lambda = 1, n = 8$) and ($\lambda = 2, n = 12$) follows the same discounted return across episodes which is in accordance with Eq. 13
Table 4. Training hyper-parameters for GridWorld and AutoNav

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>GridWorld</th>
<th>AutoNav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Mapping</td>
<td>Tabular</td>
<td>Neural Network</td>
</tr>
<tr>
<td>Number of agents</td>
<td>4, 8, 12</td>
<td>4</td>
</tr>
<tr>
<td>Algorithm</td>
<td>REINFORCE</td>
<td>REINFORCE</td>
</tr>
<tr>
<td>Max Episodes</td>
<td>1000</td>
<td>4000</td>
</tr>
<tr>
<td>Gamma</td>
<td>0.95</td>
<td>0.99</td>
</tr>
<tr>
<td>Learning rate</td>
<td>Variable</td>
<td>1e-4</td>
</tr>
<tr>
<td>base_comm</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>wait_train</td>
<td>600</td>
<td>1000</td>
</tr>
<tr>
<td>Gradient clip norm</td>
<td>None</td>
<td>0.1</td>
</tr>
<tr>
<td>Optimizer type</td>
<td>ADAM</td>
<td>ADAM</td>
</tr>
<tr>
<td>Entropy Regularizer</td>
<td>None</td>
<td>0.5</td>
</tr>
<tr>
<td>Training station</td>
<td>GTX1080</td>
<td>GTX1080</td>
</tr>
<tr>
<td>Training Time</td>
<td>9 hours</td>
<td>35 hours</td>
</tr>
</tbody>
</table>

Figure 16. [AutoNav] Floor plan and screenshot of the four 3-D environments used (from left to right: Indoor-twist, Indoor-pyramid, Indoor-frogeyes, Indoor-complex).

Figure 17. [AutoNav] C3F2 neural network used to map states to action probabilities

Algorithm 2 Update Communication Intervals

function UpdateCommInt(\(r_{m \times n}, comm\))

Initialize low_comm, high_comm, \(r_{th}\)

for each agent \(i\) do

Average the rewards across episodes

\[r_{avg} \leftarrow \frac{1}{m} \sum_{j=0}^{m-1} r_{[j, i]} \]

if \(r_{avg} \geq r_{th}\) then

\(comm[i] = low_{comm}\)

else if \(r_{avg} < r_{th}\) then

if \(comm[i] \neq low_{comm}\) then

\(comm[i] = 2 * comm[i]\)

else

\(comm[i] = high_{comm}\)